Online Multi-target Tracking with Strong and Weak Detections

نویسندگان

  • Ricardo Sanchez-Matilla
  • Fabio Poiesi
  • Andrea Cavallaro
چکیده

We propose an online multi-target tracker that exploits both highand low-confidence target detections in a Probability Hypothesis Density Particle Filter framework. High-confidence (strong) detections are used for label propagation and target initialization. Low-confidence (weak) detections only support the propagation of labels, i.e. tracking existing targets. Moreover, we perform data association just after the prediction stage thus avoiding the need for computationally expensive labeling procedures such as clustering. Finally, we perform sampling by considering the perspective distortion in the target observations. The tracker runs on average at 12 frames per second. Results show that our method outperforms alternative online trackers on the Multiple Object Tracking 2016 and 2015 benchmark datasets in terms tracking accuracy, false negatives and speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Clutter Removal in Sonar Image Target Tracking Using PHD Filter

In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...

متن کامل

Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements

Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...

متن کامل

The Multi-ICP Tracker: An Online Algorithm for Tracking Multiple Interacting Targets

We describe and evaluate a detection-based algorithm for tracking a variable number of dynamic targets online. The algorithm leverages the well-known Iterative Closest Point algorithm for aligning target models to target detections. The method works for multiple targets by sequentially matching models to detections, and then removing detections from further consideration once a model has been m...

متن کامل

A Track Creation and Deletion Framework for Long-Term Online Multi-Face Tracking

To improve visual tracking, a large number of papers study more powerful features, or better cue fusion mechanisms, adaptation or contextual models, for instance. A complementary approach consists in improving the track management, that is, deciding when to add a target or stop its tracking, for example in case of failure. This is an essential component for effective multi-object tracking appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016